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ABSTRACT 
Burkholderia cepacia is an opportunistic pathogen associated with severe 

infections in immunocompromised and cystic fibrosis patients. Its 

intrinsic resistance to multiple antibiotics and ability to survive in diverse 

environments make accurate and rapid detection essential. It also 

highlights the organism’s virulence factors, pathogenesis, and the wide 

range of available diagnostic techniques, including molecular assays, 

biosensors, and genomic approaches. Emerging technologies such as 

CRISPR-based diagnostics, microfluidics, and whole-genome sequencing 

offer promising prospects for rapid and precise identification. 

Strengthening diagnostic capacity through these innovative methods can 

significantly improve infection management and control measures for B. 

cepacia in clinical and environmental settings. 
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INTRODUCTION: 
Burkholderia cepacia is a Gram-negative, aerobic, 

motile, non-fermenting bacterium belonging to the 

Burkholderia cepacia complex (BCC), a group of 

genetically related species that have emerged as 

significant opportunistic pathogens [1]. These 

organisms are ubiquitous in soil, water, and 

hospital environments and are known for their 

ability to survive under nutrient-limited and 

antiseptic conditions [2]. B. cepacia is particularly 

associated with life-threatening respiratory 

infections in immunocompromised individuals and 

patients with cystic fibrosis, where it can cause 

chronic colonization, necrotizing pneumonia, and 

bacteremia [3,4]. The organism exhibits a 

remarkable capacity for intrinsic resistance to 

multiple antimicrobial agents, including β-lactams, 

aminoglycosides, and polymyxins, due to its 

impermeable outer membrane, efflux pumps, and 

chromosomally encoded β-lactamases [5,6]. Its 

ability to form biofilms on medical devices and 

moist surfaces further enhances persistence and 

transmission in hospital settings [7]. Consequently, 

infections caused by B. cepacia present serious 

therapeutic challenges and contribute to outbreaks 

in healthcare environments. Accurate identification 

and early diagnosis are essential to prevent 

nosocomial spread and to initiate effective therapy. 

Conventional culture and biochemical tests, 

although considered gold standards, are often time-

consuming and may fail to differentiate B. cepacia 

from other non-fermenting Gram-negative bacilli 

[8]. In contrast, molecular methods provide higher 

specificity and sensitivity. Among these, Loop-

Mediated Isothermal Amplification (LAMP) has 

emerged as a promising diagnostic tool, offering 
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rapid nucleic acid amplification under isothermal 

conditions without the need for advanced 

thermocyclers [9]. However, despite its advantages, 

standard LAMP assays may occasionally suffer 

from non-specific amplification and lower 

sensitivity. To address these limitations, modified 

LAMP methods incorporating fluorescent, 

colorimetric, and real-time detection systems have 

been developed, improving diagnostic performance 

and field applicability [10,11].  

 

Methodology 

For the review article publications were identified 

through extensive searches on PubMed, Scopus, 

Google Scholar databases using key terms such as 

“Burkholderia cepacia complex,” “LAMP,” 

“modified LAMP,” “molecular detection,” “PCR,” 

“diagnostic accuracy,” “biosensors,” and “whole 

genome sequencing.” The literature search covered 

the period from 1996 to 2025. By initial Peer-

review of the articles from the various search 

engines mentioned above gave a result of 150 

articles were initially retrieved. Following a 

preliminary screening of titles and abstract 92 

articles were included and 73 records were 

excluded for the following reasons. After exclusion, 

36 full-text articles were included in the final 

synthesis. These articles comprised both original 

research papers and review articles, focusing on the 

pathogenesis, virulence factors, antimicrobial 

resistance, and diagnostic technologies applied to 

Burkholderia cepacia complex detection. 

 

 
Figure No 1: flowchart showing the article selection process. 

 

Virulence Factors and Pathogenesis of 

Burkholderia cepacia 

The pathogenicity of Burkholderia cepacia arises 

from its large, flexible genome and an array of 

virulence determinants that facilitate colonization, 

invasion, and persistence within the host [12]. The 

severity of infection depends on both bacterial 

virulence and host immune competence. In cystic 

fibrosis and immunocompromised patients, B. 

cepacia can colonize the respiratory tract and cause 

chronic infections that are often difficult to 

eradicate [13]. Adherence to host tissues represents 

the initial step in infection. B. cepacia expresses 

Cable pili (CblA) and adhesin BCAM2418A, 

which mediate strong attachment to epithelial cells 

and mucins [14]. Following adherence, the 

bacterium produces exopolysaccharides (EPS) such 

as cepacian, which facilitate biofilm formation and 

protect cells from phagocytosis and antibiotic 

penetration [15].  

 

Virulence is further enhanced by the secretion of 

extracellular enzymes, including lipases, proteases, 

and zinc metalloproteases (ZmpA and ZmpB) that 

degrade host tissues and immune components [16]. 

B. cepacia also synthesizes siderophores like 

ornibactin and pyochelin for iron acquisition, 

crucial for survival in nutrient-limited host 

environments [17]. The quorum sensing (QS) 

systems CepIR and CciIR regulate the coordinated 

expression of multiple virulence factors, including 

biofilm components, motility, and secretion 

systems [18]. Additionally, B. cepacia employs 

Type III and Type VI secretion systems (T3SS and 

T6SS) to inject effector proteins directly into host 

cells, promoting intracellular survival, cytotoxicity, 

and immune evasion [19,20]. Another hallmark of 

B. cepacia pathogenesis is its intrinsic and acquired 

antibiotic resistance, mediated through efflux 

pumps (RND family), β-lactamase production, and 

restricted outer membrane permeability [21]. These 

mechanisms collectively contribute to its 

persistence in clinical environments and resistance 

to multiple antimicrobial agents [22]. The various 

virulence determinants and their biological roles in 

the pathogenesis of Burkholderia cepacia are 

summarized in Table 1. 

 
Table No 1: Major virulence factors of Burkholderia cepacia and their functional roles 

Virulence Factor Functional Role 

Cable pili (CblA) Mediates strong adhesion to respiratory epithelial cells and mucins; promotes colonization of the 
airways in cystic fibrosis patients. 

BCAM2418A adhesin Facilitates attachment to cytokeratin 13 and epithelial cells surfaces; enhances persistence and 

invasion. 

Exopolysaccharide (Cepacian) Promotes biofilm formation; protects bacterial cells from phagocytosis, desiccation, and 
antimicrobial penetration. 

Lipases and proteases Degrade host lipids and proteins, facilitating tissue invasion and immune evasion. 

Metalloproteases (ZmpA, ZmpB) Disrupt epithelial integrity and degrade host immune components such as complement proteins. 
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Siderophores (Ornibactin, 

Pyochelin) 

Aid in iron acquisition under host-limited conditions; essential for bacterial growth and virulence. 

Quorum sensing systems 

(CepIr, CcilR) 

Regulate biofilm formation, motility, secretion systems, and production of virulence enzymes in a 
population density-dependent manner. 

Type III secretion System (T3SS)  Delivers effector proteins directly into host cells; induces cytotoxicity and interferes with host 

immune signaling. 

Type VI secretion system (T6SS) Involved in interbacterial competition and host cell interaction; promotes intracellular survival. 

Efflux pumps Confer multidrug resistance by exporting a wide range of antibiotics and toxic compounds. 

Β-lactamases Hydrolyze -lactam antibiotics, contributing to intrinsic and acquired antibiotic resistance. 

Biofilm formation ability Enhances survival under environmental stress and confers resistance to antibiotics and host 

defenses. 

Outer membrane low 

permeability 

Limits antibiotic entry; contributes to intrinsic drug resistance. 

 

Various Diagnostic Methods for Detection of 

Burkholderia cepacia 

The detection of Burkholderia cepacia involves 

both conventional and advanced molecular 

approaches. Traditional culture methods on 

selective media, followed by biochemical 

identification systems such as VITEK-2 and API 

20NE, are commonly used but may sometimes 

misidentify closely related species [23]. PCR and 

qPCR enable rapid and specific genetic detection, 

while Loop-Mediated Isothermal Amplification 

(LAMP) and its modified variants offer simple, 

field-applicable alternatives [24]. Emerging 

CRISPR-based assays and multiplex platforms 

provide highly sensitive and specific detection with 

rapid turnaround [25,26]. Electrochemical 

biosensors, microfluidic devices, and DNA 

hybridization techniques further enhance portability 

and automation [27,28]. Advanced methods such as 

MALDI-TOF MS allow precise species 

identification through protein profiling [29], 

whereas whole-genome sequencing (WGS) remains 

the gold standard for comprehensive genetic 

characterization, outbreak tracing, and 

antimicrobial resistance profiling of B. cepacia 

[30]. 

 
Table 2: Various diagnostic methods for detection of Burkholderia cepacia  

Sr. 

No 

Methods Mechanism Advantages Challenges 

1 CRISPR-Based 

Platforms 

Gene-editing enzymes (e.g., Cas12a) 

detect BCC DNA 

Single-base specificity; 

potential for multiplexing 

Limited clinical validation 

2 Multiplex Assays Simultaneous detection of BCC and 

co-infecting pathogens 

Reduces test redundancy; 

useful in ICU settings 

Complex assay design; high 

manufacturing cost 

3 Electrochemical 

Biosensors 

Detect biomarkers via redox reactions Low-cost; scalable; rapid 

results (<30 minutes) 

Reduced sensitivity in complex 

biological samples 

4 Culture Growth of BCC on selective media Gold standard; viable 

organism recovery 

Time-consuming (2–7 days); 

labour-intensive 

5 Biochemical ID 

(VITEK/API) 

Automated or manual profiling of 

metabolic/enzymatic reactions 

Widely used; semi-

automated 

May misidentify closely related 

BCC species 

6 PCR/qPCR Amplifies BCC-specific DNA 

sequences 

Sensitive and specific; 

quantification possible 

Requires thermal cycler; 

contamination risk 

7 LAMP Isothermal amplification of target 

DNA 

Rapid (<1 hour); no need 

for thermal cycler 

Limited commercial 

availability 

8 MALDI-TOF 

MS 

Protein fingerprinting of bacterial 

isolates 

Rapid identification; low 

per-sample cost 

Requires culture; limited 

resolution for BCC 

9 WGS (Whole 

Genome 
Sequencing) 

Comprehensive sequencing of the 

entire genome 

High-resolution typing; 

resistance/virulence 
profiling 

Expensive; data analysis 

requires expertise 

10 DNA 

Hybridization 

Probes bind to complementary BCC 

DNA sequences 

High specificity; applicable 

to multiple targets 

Technically complex; slower 

than PCR-based methods 

11 Biosensor 
technologies 

Detects specific targets (e.g., DNA, 
proteins) using biorecognition and 

signal transduction. 

Fast, portable, sensitive, 
and suitable for point-of-

care diagnostics. 

Stability, reproducibility, and 
interference from complex 

samples 

12 Microfluidics Miniaturizes lab processes (e.g., PCR, 
mixing) on a chip with microchannels. 

Requires small volumes, 
offers fast, integrated, and 

automated analysis. 

Complex fabrication and risk 
of fluidic errors or clogging. 

 

Future Perspectives and Research Directions 

Future research on Burkholderia cepacia should 

focus on improving the accuracy, sensitivity, and 

speed of diagnostic tools to facilitate early 

detection and control of infections, particularly in 

immunocompromised and cystic fibrosis patients 

[31]. The integration of isothermal amplification 

methods such as modified LAMP with microfluidic 

chips and portable biosensors offers promise for 

point-of-care diagnostics [32]. Moreover, the use of 

CRISPR-based nucleic acid detection and AI-

driven data interpretation could revolutionize rapid 
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pathogen identification and antimicrobial resistance 

prediction [33,34]. Continued efforts in whole-

genome sequencing (WGS) and metagenomic 

surveillance are essential for understanding genetic 

diversity, virulence evolution, and transmission 

pathways [35]. Additionally, research into novel 

therapeutic targets, bacteriophage therapy, and anti-

virulence strategies may provide alternative 

approaches to combat multidrug-resistant B. 

cepacia infections [36]. Collaborative, 

multidisciplinary research integrating 

microbiology, genomics, and bioengineering will 

be key to addressing the growing clinical and 

public health challenges posed by this opportunistic 

pathogen. 

 

CONCLUSION: 
In conclusion, Burkholderia cepacia remains a 

significant opportunistic pathogen, particularly in 

immunocompromised and cystic fibrosis patients. 

Accurate and rapid detection is crucial for effective 

infection control and treatment. While conventional 

culture and biochemical methods remain important, 

advanced molecular and biosensor-based 

techniques such as modified LAMP, CRISPR 

diagnostics, and whole-genome sequencing offer 

superior sensitivity and specificity. Continued 

research into novel diagnostic platforms and 

targeted therapeutic strategies will be essential to 

curb the spread of multidrug-resistant B. cepacia 

and improve clinical outcomes. 
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